homehome Home chatchat Notifications


German fusion machine working as intended

Germany's extremely complex fusion machine, the largest of its kind, is reportedly working as possible.

Mihai Andrei
December 13, 2016 @ 10:05 am

share Share

Germany’s extremely complex fusion machine, the largest of its kind, is reportedly working.

This machine, called W7-X, cost approximately $1.1 billion, has a diameter of 52 feet (16 meters) and took 19 years to construct; the GIF above shows the layers of the machine.

If there’s such a thing as a clean energy Grail, then it’s fusion. Researchers have been dreaming of clean fusion for decades, but so far, it still remains a work in progress – and many doubts its feasibility. Well, in a new paper published in the journal Nature Communications, researchers working on a proof-of-concept reactor report that the device, called a stellerator, is working with “unprecedented accuracy.”

“The carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000,” the researchers wrote in the study. “This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy.”

A stellarator is a device used to confine a hot plasma with magnetic fields in order to sustain a controlled nuclear fusion reaction. The key to fusion is to create ungodly high temperatures up to 180 million degrees Fahrenheit (100 million Celsius) and generate, confine, and control a blob of gas called plasma. At these incredibly high temperatures, the very structure of the atom changes, and the electrons are ripped from the outer shells, leaving positive ions. Normally, these ions would just bounce off each other, but under these conditions, they can merge together, creating new atoms, and – BAM – you have nuclear fusion.

The basic idea to a stellerator is that the differing magnetic fields will cancel out the net forces on a particle as it travels around the confinement area. They were quite popular in the 50s and 60s, but their popularity greatly decreased in following decades, as other types of fusion research were carried. But stellerators have come back into focus in recent years, and there is a growing feeling that they could be the key to producing clean fusion energy.

Fusion power would provide more energy for a given weight of fuel than any fuel-consuming energy source currently in use, and the fuel itself (primarily deuterium) exists abundantly in the Earth’s ocean. It also emits no greenhouse gasses and has no by-products, unlike today’s fission reactors. Another aspect of fusion energy is that the cost of production does not suffer from diseconomies of scale.

“It’s a very clean source of power, the cleanest you could possibly wish for. We’re not doing this for us, but for our children and grandchildren,” one of the team, physicist John Jelonnek from the Karlsruhe Institute of Technology, said in a statement.

Wendelstein 7-X in June 2015: Commissioning is still under way.
Photo: IPP, Tino Schulz.

So far, the stellerator isn’t able to generate more energy than it consumes because it’s still just a proof of concept, but the fact that it works is incredibly impressive. This is a 425-tonne machine which took 19 years to construct, requiring 1.1 million construction hours in total. The level of complexity and overall finesse of the device is amazing and all in all, the proof of concept seems to be successful.

“Wendelstein 7-X has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist,” the researchers explained in the study.

 

share Share

Who Invented Russian Roulette? How a 1937 Short Story Sparked the Deadliest "Game" in Pop Culture

Russian Roulette is deadly game that likely spawned from a work of fiction.

What Do Ancient Egyptian Mummies Smell Like? "Woody", "Spicy" and Even "Sweet"

Scientists used an 'electronic nose' (and good old biological sniffers) to reveal the scents of ancient mummies.

A Massive Seaweed Belt Stretching from Africa to the Caribbean is Changing The Ocean

The Great Atlantic Sargassum Belt hit a record 37.5 million tons this May

Stone Age Atlantis: 8,500-Year-Old Settlements Discovered Beneath Danish Seas

Archaeologists took a deep dive into the Bay of Aarhus to trace how Stone Age people adapted to rising waters.

Researchers Turned WiFi into a Medical Tool That Reads Your Pulse With Near Perfect Accuracy

Forget health trackers, the Wi-Fi in your living room may soon monitor your heartbeat.

Popular RVs in the US are built with wood from destroyed orangutan rainforest: Investigation

The RV industry’s hidden cost is orangutan habitat loss in Indonesia.

The Evolution of the Human Brain Itself May Explain Why Autism is so Common

Scientists uncover how human brain evolution boosted neurodiversity — and vulnerability to autism.

A Light-Based AI Can Generate Images Using Almost No Energy

The future of AI art might be powered by lasers instead of GPUs.

This 1,700-Year-Old Skull is the First Evidence of a Gladiator Bear in the Roman Empire

Archaeologists uncover first physical proof of brown bears in Roman arena games.

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

Astronomers may have discovered the first rocky planet with 'air' where life could exist.