homehome Home chatchat Notifications


Scientists create better, cheaper perovskite crystals

Researchers at Brown University have found a cheaper and easier way to create hybrid perovskites, enabling engineers to develop more affordable and efficient solar cells. Perovskite is a calcium titanium oxide mineral composed of calcium titanate (CaTiO3). The mineral has received much attention in recent years as artificial perovskite crystals have increasingly been used in solar cells. Perovskite films in solar cells are excellent light absorbers, but they until now, they were more expensive to fabric and only created small crystals.

Mihai Andrei
March 17, 2015 @ 2:54 am

share Share

Researchers at Brown University have found a cheaper and easier way to create hybrid perovskites, enabling engineers to develop more affordable and efficient solar cells.

 

Credit: Padture Lab / Brown University.

Perovskite is a calcium titanium oxide mineral composed of calcium titanate (CaTiO3). The mineral has received much attention in recent years as artificial perovskite crystals have increasingly been used in solar cells. Perovskite films in solar cells are excellent light absorbers, but they until now, they were more expensive to fabric and only created small crystals.

“People have made good [perovskite] films over relatively small areas – a fraction of a centimeter or so square,” says researcher Nitin Padture, a professor of engineering.

However, the research team developed a new technique, which only requires a room-temperature solvent bath to create perovskite crystals, rather than the blast of heat used in current crystallization methods.

The high temperature process involved temperatures of 100-150 degrees Celsius (212-302 Fahrenheit) and this also limited the kinds of substrates films can be deposited on. For example, plastics would make an excellent substrate, but you can’t really place these hot films on plastic because they’d just melt the plastic. The heat also created a tendency for crystals to form unevenly with tiny pinholes throughout the resulting film, which can reduce the efficiency of solar cells.

Yuanyuan Zhou, a graduate student in Padture’s lab, wanted to see if he could create perovskite crystals without having to use high temperatures and he came up with a solvent-solvent extraction method (SSE). He basically took the materials needed to create the crystals and dissolved them in a solvent called N-Methyl-2-pyrrolidone (NMP). Then, instead of heating, the substrate is bathed in a second solvent, diethyl ether (DEE). DEE selectively grabs the NMP and washes it away, and leaves behind a smooth film of perovskite crystals – exactly what researchers wanted to see. The entire process takes less than two minutes, it’s really cheap, and the crystals can be applied to any substrate. The SSE approach also ensures a very high quality and eliminates unwanted holes in the material.

“Using the other methods, when the thickness gets below 100 nanometers you can hardly make full coverage of film,” Zhou said. “You can make a film, but you get lots of pinholes. In our process, you can form the film evenly down to 20 nanometers because the crystallization at room temperature is much more balanced and occurs immediately over the whole film upon bathing.”

To make things even better, the new films are transparent, so we could be having transparent windows generating energy pretty soon. Zhou has also been able to make cells in different colors, to be used for decorative purposes. What I personally like a lot about this study is that unlike most solar cell developments which are strictly lab innovations and can take years to develop into something useful, this actually has the potential of becoming big soon.

“We think this could be a significant step toward a variety of commercially available perovskite cell products,” Padture said.

Journal Reference: Journal of Materials Chemistry A.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.