homehome Home chatchat Notifications


National Renewable Energy Laboratory: Solar Has The Most Potential Of Any Renewable Energy Source

A recent study of gargantuan proportions estimated that the technical potential of photovoltaic cells and concentrated solar power (CSP) in the United States, at today’s level of research and with today’s possibilities, is enough to generate about 400,000 TWh of energy annually, significantly more than any other renewable energy source. The study The National Energy […]

Mihai Andrei
July 31, 2012 @ 1:14 pm

share Share

A recent study of gargantuan proportions estimated that the technical potential of photovoltaic cells and concentrated solar power (CSP) in the United States, at today’s level of research and with today’s possibilities, is enough to generate about 400,000 TWh of energy annually, significantly more than any other renewable energy source.

The study

The National Energy Laboratory (NREL) routinely estimates the technical potential of specific renewable energy technologies in different areas, but this time, they applied a GIS (Geographical Information System) method to estimate how much the typical renewable energy sources can provide per year, based on renewable resource availability and quality, technical system performance, topographic limitations, environmental, and land-use constraints.

The results obtained in the study include state-level maps for different types of energy, describing the resulted estimates. However, the study analyzes the technical potential, and not the economic or market potential, ignoring the availability of transmission infrastructure, costs, reliability or time-of-dispatch, current or future electricity loads, or other relevant policies.

The analysis and results

Here are the results, sorted by the technology type.

Solar power technologies

Total estimated technical potential for urban utility-scale photovoltaics in the United States.

Typically, utility-scale photovoltaics (PV) are split into urban-area and rural-area. All areas with slopes greater than 3% were eliminated for this technology. Also, additional extensions and filters were applied to eliminate areas which were deemed unlikely for development. The levels of solar radiation were obtained from the National Solar Radiation Database Typical Meteorological Year 3 (TMY3) data set (Wilcox, 2007; Wilcox and Marion, 2008).

Total estimated technical potential for rural utility-scale photovoltaics in the United States

 

Wind power

Total estimated technical potential for onshore wind power in the United States

Wind power technologies are split into onshore and offshore; onshore windpower is defined as the wind resource at 80 meters (m) height above surface that results in an annual average gross capacity factor of 30% (net capacity factor of 25.5%), while a suitable offshore resource should have an annual average wind speed greater than or equal to 6.4 meters per second (m/s) at 90 m height above surface. The offshore resource data extend 50 nautical miles from shore, and in some cases have to be extrapolated to fill the extent.

Geothermal energy technologies

For identified and undiscovered hydrothermal energy sources, the estimates from Williams et al. were used, estimating the electric power generation potential of conventional geothermal resources (hydrothermal), both identified and unidentified in the western United States.

Discussion and final results

These are the final results of the estimated technical generation and capacity potential in the United States.

It’s plain for anyone to see that solar energy in the form of photovoltaics and concentrating solar power offers the most potential for the United States, especially in the rural areas. Offshore and onshore wind power, while an extremely valuable resource which is blooming at the moment, will become limited sometime in the future. Geothermal systems are also extremely valuable, while hydropower and biopower are significantly limited.

However, solar energy is quite problematic at the moment, due to reduced efficiency, the scarcity of needed materials and other technical problems. However, as time will pass, at least in the US, it seems clear that this is the resource we want to tap the most.

share Share

Superhot Rock Energy Could Provide Enough Power to Fuel the U.S. Thousands of Times Over

Could next-generation geothermal energy finally fulfill its promise of ridding us of fossil fuels for good?

Researchers present the first fully AI-designed wind turbine — it's 7x more efficient in cities

AI is transforming urban wind energy. Researchers in Birmingham, UK, have developed a revolutionary turbine optimized for low wind speeds and urban turbulence.

AI's thirst for energy is reopening an infamous nuclear plant in the US

We all know AI is using up a lot of power. But we didn't have "reopening nuclear plants" on our bingo card.

Norway opens the world's first commercial carbon storage facility

This could be key technology in our climate struggles, but critics say it's greenwashing.

Electric Car Battery Charges in Under Five Minutes: Goodbye Range Anxiety?

Nyobolt's new battery promises rapid charging, but infrastructure remains the key challenge.

This Surprising Trick Could Make Your Lithium-Ion Batteries Last 50% Longer

Charging batteries at high currents may be the key to extending their lifespan.

Why Solar Panels Could Be Next Big Target for Hackers

As solar energy becomes more widespread, cybercriminals are finding new ways to breach these interconnected systems, posing serious risks to power grids and energy security.

China builds nuclear plant that can't meltdown

Nuclear energy is clean and scalable, but meltdown fears prevent it from being deployed more widely.

Could a Bronze Age technology help us store renewable energy?

Firebricks could act as better batteries for renewable energy.

Engineers create truly green hydrogen gas using only seawater, soda cans, and caffeine

Most hydrogen is not green, but this one is. Plus, it can be produced on a moving vessel.