homehome Home chatchat Notifications


Fractal-etched graphene electrode boosts solar energy supercapacitor storage by 3,000%

This could be a game changer.

Tibi Puiu
April 17, 2017 @ 4:29 pm

share Share

Inspired by the fractal structure of the fern leaf, researchers used lasers to etch self-replicating structures on a graphene electrode, designing a novel supercapacitor. The resulting energy storage system has a 30-fold higher energy density than anything previously demonstrated and could dramatically improve solar energy applications, especially the thin solar film variety.

The breakthrough electrode prototype (right) can be combined with a solar cell (left) for on-chip energy harvesting and storage. Credit: RMIT.

The breakthrough electrode prototype (right) can be combined with a solar cell (left) for on-chip energy harvesting and storage. Credit: RMIT.

There are a number of options for storing energy beyond the batteries everyone’s familiar with. For instance, a capacitor stores energy by means of a static charge, as opposed to an electrochemical reaction found in a lithium-ion battery. There are three main types of capacitors, among them the supercapacitor, which, as the name implies, has a much higher capacitance up to thousands of times higher than a classic capacitor. These are great for storing frequent charge and discharge cycles at high current and short duration. Sounds familiar? Well, solar energy is very much like that which is why there’s a great interest in the industry for supercapacitors. The reason why you don’t seem them beyond the lab included in solar energy systems is because supercapacitors were limited by energy storage densities in the order of 3 × 10−3 Whcm−3 or lower.

Australian researchers from the RMIT University in Melbourne may have set the stage for mainstream capacitors for solar energy storage. With a little help from nature, they managed to design a new electrode which when integrated with existing supercapacitors can improve the state of the art supercapacitor-based solar energy storage by an astonishing 3,000 percent.

Their inspiration was the western sword fern (Polystichum munitum) whose leaves are densely packed with veins which efficiently store energy and transport water. It’s one of the most abundant ferns in the world, known for its bright green, tapered, 2- to 3-foot-long (61- to 91-centimeter) fronds. What many gardeners might not realize about the sword fern is that at the nanolevel its leaves have a self-replicating structure akin to that of the snowflake or other fractal-like structures commonly found in nature.

A western swordfern leaf magnified 400 times. The veins of the leaf have a self-replicating structure similar to the snowflake. Credit: RMIT.

A western swordfern leaf magnified 400 times. The veins of the leaf have a self-replicating structure similar to the snowflake. Credit: RMIT.

The electrode designed by the Australian researchers is based on the fern’s naturally-efficient fractal structure. To mimic the fractals, the researchers fired high precision laser pulses to manipulate sheets of graphene, the wonder material that among its many useful properties is also an excellent electrical conductor.

Tests suggest that when the novel electrode was combined with supercapacitors, the system stored charge for longer, with minimal leakage.

“The most exciting possibility is using this electrode with a solar cell, to provide a total on-chip energy harvesting and storage solution,” said PhD researcher Litty Thekkekara and lead author of the new study published in Scientific Reports.

Specifically, the greatest boost might lie in exploiting this new electrode in conjunction with thin film solar cells which are flexible enough to be used almost anywhere to capture energy from the sun, be it on windows, smartphones or watches. We might not need to charge phones via batteries using such a technology.

 

“With this flexible electrode prototype we’ve solved the storage part of the challenge, as well as shown how they can work with solar cells without affecting performance. Now the focus needs to be on flexible solar energy, so we can work towards achieving our vision of fully solar-reliant, self-powering electronics,” the researchers wrote.

share Share

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

Fossil charcoal reveals early humans’ growing impact on the carbon cycle before the Ice Age.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

An audacious new timepiece dares to outshine Omega’s legacy in space

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.