ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Electron Beams might reduce NOx (smog) emissions in coal plants and cut costs

Dragos MitricabyDragos Mitrica
November 18, 2014 - Updated on November 16, 2020
in News, Pollution
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

It’s not just big oil – big coal is funding climate change denial too
Chinese company offers free training for US coal miners to become wind farmers
UK will shut down all coal plants by 2025, replaces with gas
The coal industry is tanking, while execs are getting a raise

With the EPA setting stricter guidelines for NOx emissions fired by coal plants, the industry is now in a position where it needs new, advanced technologies that clean flue gases. Such a solution might came from the U.S. Naval Research Laboratory (NRL), which recently partnered with a leading coal corporation to implement its electron beam technology. The system works by zapping flue gases with a high frequency electron beam which break molecular bonds in nitric oxide and nitrogen dioxide (NOx), leaving clean oxygen (O2) and nitrogen (N2) instead. If the electron beam flue gas zapper is found reliable, it could prove to be a lot cheaper than currently established catalytic reduction systems.

Zapping exhaust gases with electrons

coal plant flue gas
A new system devised at NRL is set to clean flue gases of NOx using an electron beam. Photo: Wikimedia
Dr. Matt Wolford, a chemist at the U.S. Naval Research Laboratory, is investigating if an electron beam originally built for nuclear fusion research can also be used to clean up coal power plant NOx emissions. "This is an opportunity for NRL to a get a technology that we developed here out in the real world," says Dr. John Sethian, who leads the project.  (Photo: U.S. Naval Research Laboratory/Jamie Hartman)
Dr. Matt Wolford, a chemist at the U.S. Naval Research Laboratory, is investigating if an electron beam originally built for nuclear fusion research can also be used to clean up coal power plant NOx emissions. “This is an opportunity for NRL to a get a technology that we developed here out in the real world,” says Dr. John Sethian, who leads the project.
(Photo: U.S. Naval Research Laboratory/Jamie Hartman)

The concept has already been proven on a small scale using a mixture of just NOx and nitrogen. When the powerful pulse of electrons leaves the cathode from a thin foil of steel or titanium, it hits the NOx which absorbs the energy and breaks the bonds. Firing is made in short pulses – several times a second for long durations. Considering NOx bonds typically break at 4 electron volts (eV) of energy, then a 400,000 volt electron beam can break 100,000 bonds, making it highly efficient according to NRL researchers.

Reality proves to be a lot more complex than the lab setting, though. Flue gases resulting from burning coal are made up of a lot of compounds like nitrogen, carbon dioxide (CO2), oxygen, water vapor, sulfur oxide (SOx), and particulates—depending on what the coal is.

“CO2 wasn’t a problem, but the oxygen threw us for a loop,” says Dr. John Sethian, the plasma physicist leading the project at NRL. “It’s one of these up and downs, you try not to get emotionally involved.” He thinks that problem is now solved, but others may arise before the team’s ready to demonstrate the electron beam at a power plant. “I’m confident that we’ll solve all the problems, but I can’t guarantee it,” he says. “I will guarantee, on the other hand, that we’ll figure out what’s going on.”

At the moment, the team is tweaking their system to make the electron beam work in practice. Their proposed pilot system involves splitting the coal plant’s exhaust into several narrow ducts, each treated with a pair of electron beams. Basically, it sounds like a multi-stage filter, where the flue gas become cleaner and clear as it passes through each successive step of the system. Narrower ducts would allow the electron beam to reach all the gas more efficiently; having several systems allows for regular maintenance.

A typical flue gas multi-stage cleaning system. Image: Engineering Design Encyclopedia
A typical flue gas multi-stage cleaning system. Image: Engineering Design Encyclopedia

A while ago, ZME reported how coal consumption has increased 9x faster than wind energy and 40x than solar since 2003, and the trend is expected to continue onward in the coming decades. With this in mind, we must no kid ourselves. Coal is here to stay for a while longer, and we have to make the best of it. The U.S. Environmental Protection Agency (EPA) has determined NOx contributes to ground-level ozone, pollution, and respiratory problems, and has set a margin of 100 million parts per million. This margin is set to become even tighter at 30 ppm. Coal plants now rely on what’s called selective catalytic reduction system, but these can be extremely expensive. NRL’s technology – again if proven to work reliably at the large scale – could turn in the same flue gas quality at 10 to 20 percent of the cost.

Source: NRL press release

Tags: coalcoal plant

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

Plant Bowen, the third largest coal-fired power station in the United States. Image credit: Wikipedia Commons.
Environment

Sit down, coal. For the first time, renewables dominate coal in the US

byFermin Koop
2 years ago
Image credits: Wikipedia Commons.
Environment

Farewell to coal? Experts forecast big drop in new coal-fired power plants

byFermin Koop
2 years ago
Climate

China is still moving ahead with coal power despite climate crisis

byFermin Koop
2 years ago
Coal formation. Image via Kentucky Geological Survey.
Rocks and Minerals

How coal is formed

byMihai Andrei
2 years ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.