homehome Home chatchat Notifications


Jellyfish-inspired robot aims to reduce ocean pollution

The Jellyfish-Bot is a low-power, high-efficiency solution for marine cleanup

Jordan Strickler
April 25, 2023 @ 11:04 pm

share Share

Jellyfish-Bot collecting small particles. (Credit: Max Planck Institute for Intelligent Systems)

The vast expanse of the world’s oceans is home to a staggering variety of marine life. However, this fragile ecosystem is threatened by the growing pollution caused by human activities. This problem is particularly acute around coral reefs, which are teeming with life but are also highly sensitive to changes in water quality.

To combat this growing threat, Max Planck Institute for Intelligent Systems (MPI-IS) scientists at Stuttgart have turned to nature for inspiration and developed a new type of robot that could revolutionize how we clean up our oceans.

Gentle like a jellyfish

The new robot, called the Jellyfish-Bot, is inspired by — you’ve guessed it — the graceful jellyfish.

Unlike other underwater robots, which are often bulky and noisy, the Jellyfish-Bot is small, energy-efficient, and almost entirely silent. It uses electrohydraulic actuators to power its artificial muscles, which enable it to swim creating swirls underneath its body. This, in turn, helps collect waste particles and other objects, which can be transported to the surface for recycling.

This method can also allow the robot to collect fragile biological samples, such as fish eggs, without harming them. This would make it ideal as a helper bot for marine biology research. And because it operates almost silently, it has no negative impact on the surrounding environment, allowing it to interact gently with aquatic species.

“When a jellyfish swims upwards, it can trap objects along its path as it creates currents around its body,” said Tianlu Wang, postdoc in the Physical Intelligence Department at MPI-IS and first author of the publication. “In this way, it can also collect nutrients. Our robot, too, circulates the water around it. This function is useful in collecting objects such as waste particles. It can then transport the litter to the surface, where it can later be recycled.”

The robot consists of several layers, some stiffen it while others keep it afloat or insulate it from the surrounding water. Electrically powered artificial muscles known as HASELs (hydraulically amplified self-healing electrostatic) are embedded in the middle of the layers, allowing the robot to move and manipulate objects without physical contact.

Schematic of the Jellyfish-Bot.
The different layers of Jellyfish-Bot. Credit: Max Planck Institute for Intelligent Systems

In tests, the Jellyfish-Bot has been shown to operate faster and more efficiently than other underwater robots, reaching up to 6.1 cm/s while requiring only a low input power of around 100 milliWatts.

“We achieved grasping objects by making four of the arms function as a propeller, and the other two as a gripper,” said co-author Hyeong-Joon Joo from the Max Planck Robotic Materials Department. “Or we actuated only a subset of the arms, in order to steer the robot in different directions. We also looked into how we can operate a collective of several robots. For instance, we took two robots and let them pick up a mask, which is very difficult for a single robot alone. Two robots can also cooperate in carrying heavy loads.”

Two Jellyfish-Bots grabbing a discarded mask. Teamwork! Credit: Max Planck Institute for Intelligent Systems.

However, there are still some challenges to overcome. Currently, the Jellyfish-Bot requires a wire to power it, which limits its range of operation. The researchers are developing a wireless version of the robot to enable it to operate more freely in the ocean. They have already incorporated all the necessary functional modules, such as a battery and wireless communication parts, to enable future wireless manipulation.

Plastic makes up approximately 70 percent of ocean trash, which can damage the environment for hundreds of years. The Jellyfish-Bot, however, is specifically designed to manipulate objects such as litter and transport them to the surface. The hope is that underwater robots like the Jellyfish-Bot could one day assist in cleaning up our oceans, protecting marine life, and preserving this vital ecosystem for generations to come.

Their research was published in Science Advances.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.