homehome Home chatchat Notifications


In Iceland, CO2 is sucked out of the air and turned into rock

The project, while innovative, is unlikely to save us from climate change.

Mihai Andrei
November 19, 2021 @ 11:11 pm

share Share

A facility in Iceland is taking atmospheric carbon dioxide (CO2), the main culprit of climate change, and injecting it into volcanic rocks deep underground. While this is still early days and the volume of CO2 isn’t too great, this type of technology could be very important in the future.

The Orca plant. Image credits: Climeworks.

Even if we’d magically stop all our greenhouse gas emissions tomorrow, the inertia of our past emissions would still push the planet to warm a bit. If we continue “business as usual”, things will be way worse. So why don’t we just take greenhouse gases out of the air and store them somewhere safe where they can’t contribute to global warming?

The idea is not new, but of course, it’s easier said than done. Separating out the right gases, processing them, and storing them somewhere where they can’t escape back into the atmosphere are all big challenges — and doing them all together is even more demanding. But a company working in Iceland is not deterred.

Climeworks is a Swiss company specializing in carbon dioxide air capture technology. They’ve recently built a plant in Iceland called Orca that can capture 4000 tons of CO2 per year, making it the biggest climate-positive facility in the world.

Orca (the Icelandic word for energy) lies near the Hellisheiði Power Station — the third largest geothermal power plant in the world. It consists of eight containers stacked up two by two; fans in front of a collector draw ambient air, the air passes through a selective material that collects CO2, and the CO2-depleted air is then released at the back. It’s a bit like “mining” the sky for CO2 — simple in principle, though very difficult to implement.

What happens next is also not exactly simple. After the filter is full, it’s heated to around 100 degrees Celsius to clear the CO2 of any impurities, and then piped underground a distance of three kilometres (1.8 miles) to dome-shaped facilities in a moon-like landscape where it is dissolved in water and then injected under high pressure into basalt rock 800-2000 meters deep. The injection facility was developed by Carbfix which pioneered underground carbon storage.

The injection facility. Image credits: Carbfix.

The dissolved solution starts filling the cavities of the subsurface basalt and reacting with the rock, solidifying and turning into minerals in about two years.

To do this, you need the right geology, and Iceland offers just that. Much of Iceland is a basaltic field, where this dissolved gas can be safely injected. The only way the CO2 would be released into the air is in the case of a volcanic eruption, but the injection site was chosen in an area where the risk of an eruption is very low.

A core of basalt rock (black part) with the injected CO2 (white part). Image credits: Climeworks.

However, as exciting and promising as this technology is, it won’t save us from climate change on its own. While Orca can suck up to 4000 tons of CO2 per year, the yearly global emissions are around 33.4 billion tons of CO2 — so the plant can dispose of 0.00001% of our yearly emissions. Climeworks says this is mostly a trial and it will achieve megaton removal capacity in the second part of the decade, but even one megaton is still a very small percentage of our emissions. To make matters even more complicated, the process is costly and requires large amounts of energy. While the plant is run on renewable energy, this still makes scaling more difficult.

In fact, carbon capture is making such a small dent in our total emissions that critics have argued that it’s a costly distraction from the real policy measures needed to fight climate change. It’s true that only reducing our emissions can prevent catastrophic climate change, but “you have to learn to walk before you can run,” says Julie Gosalvez, in charge of marketing for Climeworks.

Carbon storage is just emerging as a technology. It won’t help us fix climate change yet, but it can be important down the line — provided we have the right conditions for it. The only way it can work is if the world implements a carbon tax, and extracting carbon from the air is incentivized. This makes economic sense, but for now, there’s no such carbon tax on the horizon.

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Japan’s Cherry Blossoms Are Blooming Earlier Than Ever. Guess Why

Climate change is disrupting natural cycles.

The Soviets Built a Jet Powered Train and It Was as Wild as It Sounds

This thing was away of its time and is now building rust in a scrapyard.

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.