homehome Home chatchat Notifications


Giant geode large enough to fit people inside grew slow and steady

Temperature fluctuations, maybe from climate or maybe from geothermal systems, amplified a natural process that grew the crystals.

Kimberly M. S. Cartier
October 31, 2019 @ 9:38 pm

share Share

A researcher stands inside the Pulpí geode. Credit: Hector Garrido

recent study in Geology proposed that a slow and steady process grew the meter-sized gypsum crystals inside the giant geode of Pulpí. Temperature fluctuations from thousands of years ago ripened the crystals and made them literally crystal clear.

“Giant crystals are scarce,” said coauthor Juan Manuel García-Ruiz, a professor at the Universidad de Granada in Spain. The Pulpí geode is “an ovoid, an egg-shape cavity in the rock lined with crystals. But its size is 11 cubic meters, the largest [geode] in the world.”

Rare in Size and Clarity

The Pulpí geode was discovered in 1999 in Mina Rica, a former silver mine in Almería, Spain. Its gypsum crystals are up to 2 meters in size and are so clear and pure you can see the rock behind them.

Lines in the Pulpí geode’s clear gypsum crystals track growth periods. Credit: Hector Garrido.

It’s taken a while to figure out the geode’s origins because “the hydrothermal system in the origin of these crystals was exhausted,” García-Ruiz said. Most areas that have grown giant gypsum crystals are attached to inactive hydrothermal systems, the team wrote, with the exception of the Cave of Crystals in Naica in Mexico.

Without an active hydrothermal system to help unravel the geode’s origin, “we realized that we needed to unveil the geological history of the mine,” he said.

The researchers found that the rock that encompasses the geode is made of layered carbonate from the Triassic period (201–251 million years ago). The geode, however, is only between 60 thousand and 2 million years old.

“The exact [formation] date is still unknown,” García-Ruiz said. “The crystals are so pure that radiometric methods cannot measure their age.”

Low Temperature, Slow Drip

Those large crystals, however, did trap a few fluid inclusions that retained information about conditions at the time the crystals formed. The team measured the sulfur and oxygen isotope ratios of those inclusions and found that the gypsum likely stabilized at a temperature of about 20°C.

That’s much lower than the maximum soluble temperature for gypsum (45°C), which suggests that the crystals grew over a long period of time from a slow, steady drip of a concentrated calcium sulfate solution. With a relatively stable temperature, many smaller gypsum crystals dissolved to form fewer, larger ones in a process called Ostwald ripening.“Temperature fluctuations amplified the mechanism, resulting in these astonishing transparent gypsum crystals.”However, “Ostwald maturation for large crystals has not yet [been] experimentally demonstrated,” said lead author Àngels Canals of the Universitat de Barcelona in Spain. “We propose that temperature fluctuations amplified the mechanism, resulting in these astonishing transparent gypsum crystals.” If the gypsum formed around 20°C, it was likely much closer to the surface than it is today, the team argued, so the temperature fluctuations may have been caused by a shifting climate.

Mike Rogerson, an Earth system scientist at the University of Hull in the United Kingdom who was not involved with the research, told National Geographic that surface temperature changes might not have reached belowground. It’s more likely that the geode’s now inactive geothermal system created the temperature fluctuations, he said. Either way, he was excited to see the team delve into the geologic history of this popular tourist destination.

—Kimberly M. S. Cartier (@AstroKimCartier), Staff Writer

This article originally appeared in Eos magazine and was republished here under a CC BY-NC-ND 3.0 license.

share Share

Tesla’s Sales in Europe Are Plummeting Because of Elon Musk's Borderline Fascist Politics

Tesla’s sales plunge across Europe as EV buyers turn elsewhere

How dogs and cats are evolving to look alike and why it’s humans’ fault

Human fashion can be as powerful as millions of years of evolution – and it’s harming our pets.

Mathematicians Just Solved a 125-Year-Old Problem That Unites Three Major Theories of Physics

A new mathematical proof connects atoms to ocean waves and jet streams.

Nature Built a Nuclear Reactor 2 Billion Years Ago — Here’s How It Worked

Billions of years ago, this uranium went a bit crazy.

Archaeologists Discover 1,800-Year-Old Roman Cavalry Horse Cemetery in Germany

These horses served the Roman Empire and were buried with military precision.

What Your Emoji Use Really Says About You, According to Science

If you use a lot of emojis, you'll want to read this.

How Declassified Cold War Satellite Images Are Helping Find Bombs and Mines Buried for Decades in Southeast Asia

Old spy satellites and new AI help unearth the hidden bombs of Southeast Asia.

Your Brain Data May be Up For Sale and It's Totally Legal (For Now), Say U.S. Senators

Lawmakers warn brainwave data could expose mental health and be sold without consent.

6 Genetic Myths Still Taught in Schools (That Science Says Are Wrong)

Many traits we learn as 'genetic facts' are more folklore than fact.

This Indigenous Group Doesn’t Sing to Babies or Dance—and It’s Reshaping Anthropology

Cultural trauma and loss can silence even the most human of traditions.