homehome Home chatchat Notifications


Wildfire smoke can carry microbes that cause infectious diseases, researchers find

There's no such thing as 'clean' smoke, microbes can survive in it.

Fermin Koop
December 18, 2020 @ 7:28 pm

share Share

Breathing wildfire smoke, even in low amounts, means you’re exposed to noxious gases, plant material, and incinerated synthesis materials. It’s bad enough, especially for those with respiratory conditions. But there’s more: the haze can also be loaded by microbes, a new study showed.

Image credit: Flickr / BLMidaho

Wildfires over the past 3 years have resulted in lengthy episodes of smoke inundation across major metropolitan areas in Australia, Brazil, and the United States. In 2020, air quality across the western United States reached and sustained extremely unhealthy to hazardous levels for successive weeks from August through November.

Although the pulmonary and cardiovascular consequences of human exposure to smoke particulate matter are extensively researched, there remains little recognition or monitoring of microbes, a smoke component with potentially important health repercussions that has only just started to be studied.

That’s why a pair of researchers, Leda Kobziar and George Thomson, published a perspective piece, calling for a multidisciplinary approach from fire ecology to epidemiology to better characterize these microbes and determine how they might be making wildfire smoke even worse for human health.

“It’s not just comprised of particulate matter and gases, but it also has a significant living component in it,” Kobziar told Wired. “Wildfire smoke may actually spread beneficial organisms for an ecosystem but what might the consequences be for the spread of pathogens that we know are airborne?”

Wildfires are a source of bioaerosols, airborne particles made of fungal and bacterial cells and their metabolic byproducts. Once they are in the air, these small particles can travel hundreds or even thousands of miles. The extent will depend on the fire behavior and atmospheric conditions, eventually being deposited or inhaled.

But shouldn’t the microbes get burned in the flames? Not necessarily, the researchers argue. Wildfires burn at different intensities at different spots as they move around. This means complete combustion happens simultaneously with incomplete combustion, leaving lots of pockets in which microbes can survive the blaze.

Instead of dying, microbes can be transported in wildfires smoke emissions. They are basically hitchhikers on charred carbon and water vapor. While microbial concentration in smoke is higher near the fire source, these microbes may be active agents spreading infection, the researchers argue in their piece.

“The diversity of microbes we have found so far in the very few studies that have been done is impressive,” said Kobziar in a statement. “These taxa (groups of living organisms) were not found in non-smoky air in the same locations prior to the fire, proving that combustion and its associated winds aerosolize microbes.”

For example, there’s the fungus genus Coccidioides, a species that lives in soil. If a fire disrupts a landscape, it affects the soil directly by burning it with flames but also indirectly, as the hot and rising air creates an atmospheric void near the surface. This can produce strong winds that move the earth, aerosolizing the fungi and altering the local microecosystem.

A firefighter can then inhale that air filled with microbes, which can create a condition known as coccidioidomycosis, or valley fever, with symptoms such as fever and shortness of breath. This can then progress to pneumonia or meningitis. Coccidioidomycosis is actually very common among firefighters.

This could easily get more severe. Wildfires are getting bigger because of climate change and researchers are reporting an increase in the number of people in the American West infected with mycoses. Fungal spores “can at as an allergen and initiate asthma,” Mary Prunicki, from Stanford University, told Wired.

Studies with hurricanes and storms had shown that microbes agents can travel very long distances, but no one was able to prove a similar journey for bacteria in a smoke plume. But the ability of smoke to travel around the world suggests that it could be a “missing link” in explaining some patterns of infection.

“When infections are detected in patients, the potential causal agents that are screened are based on what is known to be endemic in a given region,” said Kobziar. “However, smoke blurs the lines between regions.”

The perspective piece was published in Nature.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.