homehome Home chatchat Notifications


Scientists boost plant disease resistance by engineering their microbiome

It could eventually lead to lower use of pesticides in agriculture

Fermin Koop
January 8, 2024 @ 10:27 pm

share Share

The plant microbiome refers to the complex community of microorganisms, including bacteria, fungi, and viruses, that live on and within plants, playing crucial roles in their growth, health, and resilience to environmental stresses and diseases. For the past decade, scientists have been looking at the microbiome to better understand its impact on plants’ well-being and susceptibility to diseases. Now, we may have some answers.

Rice crop
Image credit: PxHere.

For the first time, scientists have genetically altered the microbiome in rice plants, increasing the prevalence of “good” bacteria that protect the plant from diseases. The findings could one day reduce the need for pesticides — largely used around the world for food production but with negative consequences for human health and ecosystems.

“For the first time, we’ve been able to change the makeup of a plant’s microbiome in a targeted way, boosting the numbers of beneficial bacteria that can protect the plant from other, harmful bacteria,” Tomislav Cernava, one of the authors of the new study and a plant researcher at the University of Southampton, said in a news release.

Microbiomes, in various forms, engage with both living and non-living components of their surroundings. In the case of plants, the microbiome plays a crucial role in sustaining life by offering vital services to the plant. Its interactions occur with elements such as soil, air, water, and plant roots. This is similar to the human microbiome, which researchers have found is also very impactful on our health.

Scientists are beginning to grasp the formation of microbial ecosystems surrounding plants and their impact on growth. The plant microbiome encompasses many types of microorganisms, particularly fungi and bacteria, often numbering in the thousands. Often, it is a mutualistic relationship in which the microbes also rely on their plant host for survival, needing access to oxygen.

Natural defenders

In their study, the researchers discovered a specific gene in rice plants that is responsible for their production of lignin, an organic polymer abundant in the cell walls of some specific cells. They suspected that this gene also affects the composition of the rice plant’s microbiome, so they decided to deactivate it to see what effects this caused.

Indeed, this led to a decline in the populations of beneficial Pseudomonadales bacteria within the microbiome. The researchers then changed the gene to make it overproduce a specific metabolite (a small molecule produced by the host plant during its metabolic processes). This increased the proportion of beneficial bacteria.

When exposed to Xanthomonas oryzae, a pathogen responsible for bacterial blight in rice crops, these genetically modified plants exhibited significantly higher resistance compared to the wild-type rice. Bacterial blight is an early-season disease that can lead to substantial loss of rice yields. Farmers usually control it by using pesticides.

The researchers believe that producing a crop with an enhanced microbiome could help to increase food security and help the environment. “This breakthrough could reduce reliance on pesticides, which are harmful to the environment,” Cernava said. He added that the framework could be applied to other plants apart from rice crops.

The study was published in the journal Nature Communications.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.