homehome Home chatchat Notifications


Old fish don't want to swim deep -- but we're fishing them all out of shallow waters

What we thought is a natural law is probably 'just' impending ecological breakdown.

Alexandru Micu
June 11, 2018 @ 1:32 pm

share Share

Our ocean-swimming friends like to go to deeper waters as they age — or so we thought. New research revealed that this process, which we considered a natural element of fish’s development cycles, is actually caused by human activity.

Trout.

Image via Pixabay.

Older fish tend to dwell in deeper waters than younger members of the same species. This phenomenon is known in biology as Heincke’s Law, developed during the 1900’s based on observations of North Sea plaice and other species in the Atlantic such as cod, haddock, pollock, and some flatfishes.

Grow up, move down

As it is so widely-seen in all manner of fish species, biologists assumed that it’s something the scalies naturally do as part of their life-cycle — in other words, that this behavior is ontogenic in nature.

Heincke’s Law, however, has started to show cracks in later years. Several studies (for example L. Schumacher et al., 2017) have called the presumed link between age and usual depth into question. A new paper published by a team of Canadian researchers proposes that a different (and more worrying) factor is at play: us. Their theory is that all big fish are found in deeper waters because we fish out any that dares remain in shallow ones.

Several ideas were proposed in the past in an attempt to explain Heincke’s law. Older fish slink to deeper, colder waters where lower metabolic demands allow them to live longer, one stated. Another, that all fish like to live in shallow waters, but competition pushes older members off of this prime territory. Or, coming from the other direction, that all fish actually love deep waters — but younglings swim to the top in an effort to protect themselves from aggressive adults down below.

Not satisfied with any of these explanations, the team — composed of members from the Bedford Institute of Oceanography in Dartmouth and Queen’s University, Kingston — set out to investigate. They started by reevaluating datasets of cod stocks in the Eastern Scotian Shelf (off the coast of Nova Scotia) from 1970 to 1989.

Correlation does not imply causality

They selected this species and period because cod-fishing has traditionally been a major industry in Canada. But, faced with freefalling stocks, the country imposed a moratorium on cod fishing in 1993 that’s still in effect to this day.

On first look, the records seem to support Heincke’s view — throughout the years covered in the dataset, larger cod were found in deeper and colder waters. However, the team then ran computer simulations tying the capture depth and mass of fish to mortality rates induced by fishing. When these simulations were fed with fishing rates taken from the dataset, the outcomes were consistent with how we’ve seen fish stocks and distribution evolve.

When fishing-induced mortality rates were increased, larger fish were progressively pushed deeper. When fishing rates were set to zero, there was no age-related distribution across different depths, the team reports.

The findings are lent further weight by real-life observations. Due to Canada’s moratorium, no cod fishing took place in the investigated area between 2006 and 2010. The team notes that cod of all sizes and ages were found living together in shallow waters during this time, which they credit to the fact that older fish weren’t being fished out of the water.

Oceans house some of the largest, most complex ecosystems on the planet — and they underpin those on land. The results showcase the incredible pressure we’re putting on these systems and raise concerns about the damage we’re inflicting.

It’s also worth to note that between anthropic climate change and overfishing, we’re destroying fish stocks all over the planet. The problem is further compounded by pollution.

The paper “Exploitation drives an ontogenetic-like deepening in marine fish” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.