homehome Home chatchat Notifications


Bees can defend themselves against some neonicotinoid pesticides

A new way to make pesticides more bee-friendly.

Elena Motivans
March 22, 2018 @ 6:02 pm

share Share

Neonicotinoids are a hot topic—the pesticides have been shown to be toxic to bees, which are essential for pollinating the crops in the first place. To harm bees while protecting crops from pests is counterproductive, of course. There is a strong commercial interest in protecting bees as well—to have a good public image and a product that farmers will buy. Researchers from Bayer AG, a company which produces neonicotinoid insecticides, the University of Exeter, and Rothamsted Research have discovered how bees are able to defend themselves against some neonicotinoids. The study was published in the journal Current Biology.

Pesticides and their effect on bees are a hot topic. Image credits: greensefa.

The differences in sensitivity that bees show toward pesticides stem from how these chemicals are broken down by the metabolic enzymes that the bees use in defense against toxins.

“Honeybees are more than 1,000 times less sensitive to the neonicotinoid thiacloprid than imidacloprid, with the latter classified as ‘highly toxic’ but the former categorized as only ‘slightly toxic’ or ‘practically non-toxic’ according to the official categories of the US Environmental Protection Agency,” says Chris Bass from the University of Exeter, United Kingdom. “By utilizing genomic information and state-of-the-art molecular and biochemical techniques, we show that in both honeybees and bumble bees, this selectivity is determined by closely related enzymes, which rapidly break down thiacloprid before it impacts the bee nervous system. Those same enzymes have little to no capacity to break down imidacloprid–thus explaining the differences in bee sensitivity to these compounds.”

The enzymes that the bees use for defense are called cytochrome P450s. The researchers treated bees with a chemical used to block the function of P450 enzymes, causing the bees become much more sensitive to thiacloprid, but they were about the same to imidacloprid.

Bees in front of a beehive. Image credits: Bayer Bee Care Center.

The researchers then created genetically modified fruit flies, which expressed the different bees’ P450 enzymes. By testing these fruit flies, the researchers found one key P450 enzyme called CYP9Q3 that makes honey bees tolerant to thiacloprid. Bumblebees have a closely related P450 enzyme called CYP9Q4, which performs the same function.

“We identified the same enzyme subfamily degrading thiacloprid in two different bee pollinator species, which raises hope that the mechanism is evolutionarily conserved among other bee pollinators,” Lin Field of Rothamsted Research says. “We also found that these key enzymes are expressed at particularly high levels in Malpighian tubules–the insect equivalent of kidneys–and/or the brain where neonicotinoid insecticides act.”

Already, these findings make it easier to identify strategies that can protect the bees. Screening tests could be used to identify chemicals that can be broken down by bees. Additionally, some other preventative measures can be taken. For example, some fungicides inhibit P450 enzymes so they should not be used alongside neonicotinoids.

It has been difficult to design pesticides that don’t kill bees, because the same protein functions are well conserved across all arthropods. It is for this reason that pesticides can have the unintended consequence of killing arthropods in the soil, air, and water, regardless of whether they are pests or not. It is a positive sign that there is a pathway in bees that can protect them against certain pesticides.

Current Biology, Manjon, Troczka, and Zaworra et al.: “Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides” http://www.cell.com/current-biology/fulltext/S0960-9822(18)30230-6

share Share

The Sound of the Big Bang Might Be Telling Us Our Galaxy Lives in a Billion-Light-Year-Wide Cosmic Hole

Controversial model posits Earth and our galaxy may reside in a supervoid.

What did ancient Rome smell like? Fish, Raw Sewage, and Sometimes Perfume

Turns out, Ancient Rome was pretty rancid.

These bizarre stars could be burning darkness to survive

Our quest for dark matter is sending us on some wild adventures.

The new fashion trend among chimpanzees: sticking grass in your ear (and butt)

A new trend is making the rounds in a chimp community.

Scientists Created an Evolution Engine That Works Inside Animal Cells Like a Biological AI

This system accelerates evolution in living cells and it's open source.

A Common Cough Syrup Might Protect the Brain in Parkinson’s Dementia

An old drug reveals new potential — but only in some patients.

A Common DNA Sugar Just Matched Minoxidil in Hair Regrowth Tests on Mice

Is the future of hair regrowth hidden in 2-deoxy-D-ribose?

This Abandoned Island Off Venice Was a Plague Hospital, a Mental Asylum, and a Mass Grave

It's one of the creepiest places you can imagine.

Being Left-Handed Might Not Make You More Creative After All

It's less about how you use your hands than how you use your brain.

Interstellar comet: Everything We Know About 3I/ATLAS

The visitor is simply passing through our solar system.