homehome Home chatchat Notifications


New areas will need conservation due to climate change

Climate change will force species to migrate in search of ideal living conditions, and a new paper estimates where they’ll go in order to inform conservation efforts. Each species has a set of conditions it likes to live in — a certain amount of light, a temperature that’s just right, certain habitats to act as […]

Alexandru Micu
January 31, 2020 @ 8:00 pm

share Share

Climate change will force species to migrate in search of ideal living conditions, and a new paper estimates where they’ll go in order to inform conservation efforts.

Image via Pixabay.

Each species has a set of conditions it likes to live in — a certain amount of light, a temperature that’s just right, certain habitats to act as shelters, and a preferred menu. With shifting climates, however, the traditional ranges species inhabit, which correspond to the areas that satisfy their requirements, will also shift. Under these conditions, species will likely migrate to find greener pastures.

But where to?

“We are going to need to protect different places if we want to protect biodiversity in the future,” said lead author Joshua Lawler, a UW professor in the School of Environmental and Forest Sciences.

“We need to think about where species will go as the climate changes, and then plan for that. The business-as-usual planning process isn’t going to work.”

Efforts to protect plant and animal species hinge on knowing which areas these species inhabit. For example, habitat conservation efforts around the snowy plover focus on specific locations along the Washington coast, because that’s where the animals live.

A new paper authored by researchers from the University of Washington and The Evergreen State College aims to understand how species migration as a result of climate change will impact future conservation efforts. For the study, the team analyzed whether accounting for climate change can improve our current biodiversity conservation practices, and how expensive it would be to implement. They report that most species are expected to migrate due to climate change, and that we’ll need to shift the areas we focus on to keep adequately protecting them.

The team looked at 1,460 different species of plants, birds, mammals, reptiles, and amphibians across the continental US. For each, they considered which current and potential future protected habitats are suitable for their needs. All in all, if impacts from climate change aren’t specifically considered, the team found that 14% of the species won’t have a viable habitat in the future. Current protection efforts focus exclusively on the areas where the species are living today, the team explains, not where they need to be in a warmer future.

“Our findings show that species are going to shift around, and we are going to have to put some of our conservation efforts in different places — and that will come at a cost,” Lawler said.

“Climate change effects that were originally projected to be decades in the future are starting to become apparent in the present day. This is not an abstract concept anymore,” said co-author John Withey, a professor at Evergreen. “We need to take action as soon as possible, thinking about where species may need to go under climate change, and providing corridors through which they can move.”

The team considered three approaches to including climate change migration predictions into our current conservation efforts. The first involved selecting certain species and then extending protection beyond the areas they inhabit now to include their estimated future range. The team used the Townsend’s chipmunk, western rattlesnake, and yellow-billed magpie as models for this step — they found it would cost about 60% more than solely protecting their current habitats. More general approaches, such as installing “climate corridors” or protecting landscapes with rare or disappearing climatic conditions wouldn’t lead to many increased costs — likely because many of these landscapes are already protected.

“It was encouraging to see that there were some climate-based solutions that didn’t increase the cost substantially,” said co-author Julia Michalak, a UW research scientist in the School of Environmental and Forest Sciences.

The team hopes that their findings will help policy-makers identify which areas are a high priority for conservation in general — they caution that the paper isn’t intended to help pinpoint specific new parks to protect. Still, having a general idea of what will work in the future should help us save money now and cut down on hassle down the road. And it will help keep as many plants and critters alive as possible.

The paper “Planning for climate change through additions to a national protected area network: implications for cost and configuration” has been published in the journal Philosophical Transactions of the Royal Society B: Biological Sciences.

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

The Oldest Dog Breed's DNA Reveals How Humans Conquered the Arctic — and You’ve Probably Never Heard of It

Qimmeq dogs have pulled Inuit sleds for 1,000 years — now, they need help to survive.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

There's a massive, ancient river system under Antarctica's ice sheet

This has big implications for our climate models.

I Don’t Know Who Needs to Hear This, But It's Okay to Drink Coffee in the Summer

Finally, some good news.