homehome Home chatchat Notifications


Rock daisies quickly conquered deserts -- but the rest of the plants aren't likely to adapt to an increasingly arid world

Today's plants are likely poorly equipped to withstand rising aridity unless they come preadapted.

Tibi Puiu
February 2, 2023 @ 8:11 pm

share Share

Rock daisies love to grow on steep rocks and this helped them to adapt to desert biomes. Other plants, however, many not be so lucky. Credit: Isaac Lichter-Marck.

At a time when climate change is making many areas of the planet hotter and drier, it’s sobering to think that deserts are relatively new biomes. For instance, the widespread arid regions that currently cover much of western North America only emerged 5 to 7 million years ago. Understanding how some plants invaded and thrived in these harsh biomes thus presents a unique opportunity, allowing scientists to assess how today’s ecosystems will fare in a drier future.

However, a new study from the University of California, Berkeley — although highly revealing — doesn’t bring good news. Researcher Isaac Lichter-Marck and Bruce Baldwin, UC Berkeley professor of integrative biology, studied rock daisies, a group of plants that invaded deserts millions of years ago. The study shows that these pioneers came pre-equipped to deal with heat, sun, and drought, having developed adaptations while living on dry rock outcroppings and even in tropical forests.

“The history of rock daisies suggests that when deserts emerged, those plants that had the necessary pre-adaptations to take advantage of new conditions were the ones that thrived,” says Lichter-Marck in a statement.

From fossils to rock climbing: a window into desert plant evolution

The alcove or hanging-garden rock daisy (Laphamia specuicola), seen here on steep sandstone cliffs in Arches National Park in Moab, Utah, was only recently identified and described as a new species. Credit: Isaac Lichter-Marck.

Botanists have long known that when plants invaded deserts, they diversified quickly to fill the many niches created by the new habitat. Paleontologists have also noted similarities between fossilized plants that grew tens of millions of years ago, long before the widespread proliferation of deserts seen now when they cover a fifth of Earth’s surface, and desert plants today. However, these observations present a dilemma: Did iconic desert plants, like the stately saguaro cacti, the flaming ocotillos and the Seussian agaves, adapt to arid conditions only after they invaded deserts or were they already preadapted to thrive even in such harsh conditions?

“Plants that live on rock outcrops face many of the same challenges as those living in a dry, desert habitat,” Lichter-Marck said. “Rock outcrops tend to be exposed to UV light, wind and dry, desiccating conditions, as well as heat and frost. They also tend to be more exposed to herbivores.

“The ways that plants deal with them are diverse, but they usually involve some kind of specialized root morphology that helps them to anchor in rock outcrops, as well as deal with the heightened arid conditions. And they tend to have smaller leaves, or leaves with a dense covering of hairs that help buffer them against drought and block sunlight, including UV light. They also tend to have heightened chemical defenses against herbivores, because it takes a lot of energy to regenerate after being munched.”

Researchers collected hundreds of specimens of rock daisies, sometimes in arduous working conditions as some of these plants bloom on vertical rock faces or sky island mountain ranges. Thankfully, Lichter-Marck is an experienced mountaineer, which shows that you can never have enough diverse skill sets when doing biology fieldwork.

Brandegee’s rock daisy (Perityle brandegeeana). Credit: Isaac Lichter-Marck.

With these samples in hand, the researchers then set about sequencing their DNA and cataloging their particular characteristics, such as where exactly they grew, whether they were a herb or a shrub, or what type of root system they had. This data was then compared with fossilized daisies in order to map a rough evolutionary timeline that might point to the moment the lineage shifted into desert biomes.

The analysis showed that most rock daisies, especially those in the genus Laphamia, already possessed some adaptations for heat, aridity, wind, and sun well before they appeared in desert landscapes. The same likely applies to other successful desert plants like cacti, which are known to inhabit rock outcrops.

“What this means is that the strategies for drought tolerance that are so characteristic of desert vegetation might not actually represent responses to the dry conditions found in deserts. Instead, they could be traits that evolved earlier in association with much older and more stable dry microclimates, such as rock outcrops in tropical settings,” Lichter-Marck said.

This research is significant today as accelerating aridity due to climate change is forcing plants to adapt much faster than in the past. If adaptation to arid conditions was only possible for plants that had already evolved to deal with such stresses, many plants today may not have the necessary genetic tools to survive.

Next, the researchers plan on extending their research to plants that grow on rock outcrops in Hawai’i. This time though, there will be less dangerous rock climbing, as they hope to use drones to collect samples instead.

The findings appeared in the journal PNAS.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.