homehome Home chatchat Notifications


Renewable plastic made from CO2 and waste agriculture

Making bottles to meet America’s demand for bottled water uses more than 17 million barrels of oil annually, enough to fuel 1.3 million cars for a year. Instead of petroleum, Stanford researchers have found a creative way to make plastic for bottles sourced from CO2 and inedible plants like waste agriculture or grasses.

Tibi Puiu
March 10, 2016 @ 2:07 pm

share Share

Making bottles to meet America’s demand for bottled water uses more than 17 million barrels of oil annually, enough to fuel 1.3 million cars for a year. Instead of petroleum, Stanford researchers have found a creative way to make plastic for bottles sourced from CO2 and inedible plants like waste agriculture or grasses.

water bottle

Image: Pixabay

 

Most plastics today are made from  polyethylene terephthalate (PET), or polyester more commonly known. Each year about 50 million tons of PET are made to meet growing demand for electronics, food and beverage containers, personal-care products or fabrics.

To make PET, the industry uses , terephthalic acid and ethylene glycol, which are both derived from fossil fuels like petroleum and natural gas. For every ton of PET, four tons of CO2 are released according to Matthew Kanan, an assistant professor of chemistry at Stanford.

Kanan and colleagues investigated an alternative to PET called polyethylene furandicarboxylate (PEF) which can be sourced from biomass instead of petroleum. Moreover, PEF can seal oxygen better which makes it a more attractive material for bottling.

PEF is made from ethylene glycol and a compound called 2-5-Furandicarboxylic acid (FDCA). However, there are two challenges the industry faces with FDCA. For one, scaling the manufacturing process so it makes economic sense has been in vain. Secondly, though sourced from biomass, FDCA might actually be more harmful to the environment depending on where it’s made.

Traditionally, FDCA is made out of fructose sourced from corn syrup. This, however, displaces potentially usable farm land for edible agriculture. It also involves a lot of fertilizer, water and energy to grow. The Stanford researchers have orientated themselves to another feedstock: furfural, a compound made from agricultural waste. Some 400,000 tons are produced every year for use as solvents, resins and other products.

They used a benign and inexpensive compound called carbonate — one of the most widely distributed mineral around the planet and the stuff animals’ shells are made of. Mixing and heating carbonate, CO2 and furoic acid derived from furfural, the Stanford researchers formed a molten salt. Five hours later, 89 percent of the mixture converted to FDCA. Making PEF from FDCA is a straightforward process.

The researchers claim that using plastics made with this process will dramatically lower the carbon footprint of bottled beverages. The CO2 can be sourced from nearby power plants. Emissions are plentiful, as we all know. Products made of PEF can also be recycled or converted back to atmospheric CO2 by incineration. Eventually, that CO2 will be taken up by grass, weeds and other renewable plants, which can then be used to make more PEF.

We believe that our chemistry can unlock the promise of PEF that has yet to be realized,” Kanan said. “This is just the first step. We need to do a lot of work to see if it’s viable at scale and to quantify the carbon footprint.”

Reference: Carbon dioxide utilization via carbonate-promoted C–H carboxylation, nature.com/articles/doi:10.1038/nature17185

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.