homehome Home chatchat Notifications


An artificial leaf can turn carbon dioxide into fuel

CO2 is the main contributor to global warming

Fermin Koop
November 6, 2019 @ 12:45 pm

share Share

Seeking innovative ways to deal with the rise in greenhouse gas emissions, a group of scientists has developed a so-called “artificial leaf” that can convert carbon dioxide (CO2) into a useful alternative fuel – with almost no costs.

Credit Wikipedia Commons

The research, published in the journal Nature Energy, was inspired by the way plants use energy from sunlight to turn carbon dioxide into food.

“We call it an artificial leaf because it mimics real leaves and the process of photosynthesis,” said Yimin Wu, an engineering professor at the University of Waterloo who led the research. “A leaf produces glucose and oxygen. We produce methanol and oxygen.”

Carbon dioxide is the primary contributor to global warming. Making methanol out of it would both reduce greenhouse gas emissions and provide a substitute for the fossil fuels that create them. The key to the process is a cheap, optimized red powder called cuprous oxide.

The powder is created by a chemical reaction when four substances – glucose, copper acetate, sodium hydroxide, and sodium dodecyl sulfate – are added to water that has been heated to a particular temperature. It’s engineered to have as many eight-sided particles as possible

Then, the powder serves as the catalyst, or trigger, for another chemical reaction when it is mixed with water into which carbon dioxide is blown and a beam of white light is directed with a solar simulator.

“This is the chemical reaction that we discovered,” said Wu, who has worked on the project since 2015. “Nobody has done this before.”

The reaction produces oxygen, as in photosynthesis, while also converting carbon dioxide in the water-powder solution into methanol. The methanol is collected as it evaporates when the solution is heated.

Looking ahead, the next steps in the research include increasing the methanol yield and commercializing the patented process to convert carbon dioxide collected from major greenhouse gas sources such as power plants, vehicles, and oil drilling.

“I’m extremely excited about the potential of this discovery to change the game,” said Wu, a professor of mechanical and mechatronics engineering, and a member of the Waterloo Institute for Nanotechnology. “Climate change is an urgent problem and we can help reduce CO2 emissions while also creating an alternative fuel.”

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.