ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Monkeys’ brain activity syncs up when they watch each other do something

It's not monkey business.

Elena MotivansbyElena Motivans
March 29, 2018
in Animals, Mind & Brain, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Perhaps you wonder why it is so easy to empathize with another person, or why you feel hungry when you see someone eating a sandwich, or why you feel the urge to yawn when you see someone else yawn. Mirror neurons are thought to be key in how humans relate to each other. When one person watches another person doing a task, mirror neurons fire in the observer as if they were also performing the task. The same phenomenon is observed in animals. Researchers from Duke University have conducted research that suggests that mirroring in monkeys is influenced by factors like proximity, social hierarchy, and competition for food.

The researchers created a multi-channel wireless system that recorded the electrical activity of hundreds of neurons in the motor cortices of two monkeys as they interacted. This new system allowed researchers to track exactly which neurological changes were going on in the monkeys’ brains while they were interacting— something that has not been done before. When monkeys interacted during a social task, their brains were highly synchronized— their neurons fired at the same time.

A computer screen displays one monkey’s brain activity. Image credits: Shawn Rocco/Duke Health.

For the main experiment, a “passenger” monkey was placed in an electric wheelchair that was steered across the room to a reward, a fresh grape. A second “observer” monkey was also in the room watching the first monkey. The activity of both brains was recorded at the same time. A lot of the time, the two monkeys had synchronized neurons. The synchronization could predict the location and velocity of the wheelchair, as well as how close the animals were together and how far the passenger was from the reward.

The brain activity also depended a lot on the social rank of the monkey. When a dominant monkey was the passenger, the brain synchronization increased as the passenger approached the observer and peaked when they were three feet apart—a distance close enough to groom or attack. When the roles were reversed, synchronization did not increase as the lower ranked monkey approached the dominant monkey. Apparently, it is not so important when a subordinate monkey approaches, perhaps they are a lower threat.

The researchers believe that the synchronization was generated by the activation of both monkeys’ mirror neurons at the same time. Similar brain synchronization could occur in humans as well. In conditions such as autism, the functioning of mirror neurons is disrupted. This research could thus help to treat autism. It could also be used to gauge how well different groups work together.

“Using a non-invasive version of this approach, we may be able to quantify how well professional athletes, musicians or dancers are working together, or if an audience is engaged in what they’re seeing, listening or imagining,” said senior author Miguel Nicolelis, M.D., Ph.D. “This could be valuable for any social task that requires the synchronization of many individuals to improve social cohesion.”

The researchers plan to test these ideas on people next, using functional MRI and electrode caps.

The journal reference can be accessed here.

RelatedPosts

Why older adults are getting smarter than before: insights from new research
A Better Glipse of “Doomsday-asteroid” Apophis as seen by Herschel
NASA finds vast quantities of frozen water on Pluto
Mars-eye view of Earth and the Moon

ShareTweetShare
Elena Motivans

Elena Motivans

I've always liked the way that words can sound together. Combined with my love for nature (and biology background), I'm interested in diving deep into different topics- in the natural world even the most mundane is fascinating!

Related Posts

News

Japan Just Smashed the Internet Speed World Record and It Could Revolutionize the Internet

byTudor Tarita
2 hours ago
Biology

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

byTibi Puiu
2 hours ago
Mind & Brain

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

byTibi Puiu
2 hours ago
This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
2 hours ago

Recent news

Japan Just Smashed the Internet Speed World Record and It Could Revolutionize the Internet

July 18, 2025

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

July 18, 2025

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

July 18, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.