homehome Home chatchat Notifications


How the dragonfly got its wing patterns

Dragonflies have been around for 200 million years, long before humans stepped in. They also feature intricate wing patterns, which humans are now studying using an algorithm.

Mihai Andrei
September 17, 2018 @ 10:02 pm

share Share

Researchers used a new algorithm to calculate how one of the most intricate and delicate patterns in the natural world developed: the dragonfly wings.

The hindwing of a dragonfly. Dragonflies are among a group of insect species that have a complex network of veins, partitioning the wing into hundreds or thousands of small, simple shapes. The shape and position of these secondary veins are endlessly variable, generating unique patterns on each individual wing. Image credits: Harvard University.

Dragonflies have been around for 200 million years, and they’ve developed some remarkable features. For starters, they’re fierce predators, widely considered to be the most efficient predators in the animal world. Dragonflies are also agile fliers, with powerful wing muscles and a robust physical constitution. Sure, the wings seem very delicate and fragile to us, but at the insect scale, they’re truly powerhouses.

The wings of dragonflies also feature remarkably intricate patterns, which have puzzled researchers for quite a while. Each pattern is unique, but the reason why complicated patterns form (like leopard spots or zebra stripes) is still not exactly clear. So Harvard researchers set out to develop a framework for understanding how they form.

They compiled a database of more than 500 specimens from 215 different species of dragonflies and damselflies (a closely related group), “teaching” the algorithm to differentiate each individual shape made from the intersecting veins on the wings of the insect.

A differentiated, or segmented, wing outlining each individual polygonal shape made from the intersecting veins. Image credits: Harvard University.

The authors found that while every pattern is unique, the general distribution is remarkably similar across families and species. Based on this finding, the researchers built a developmental model for how these patterns can be formed.

They found that by inputting only a few simple parameters, they can determine the formation of complex patterns, similar to what is observed in nature.

Scientists tested the algorithm on several species, even some distantly related insects, finding that every time, it generates life-like reproduction of wings.

Dragonflies and damselflies have particularly elaborate vein patterns. The researchers compiled a dataset of wings from 232 species and 17 families of dragonflies and damselflies. Image credits: Harvard University.

Researchers also propose a reason why the patterns develop this way, though this has not been verified yet.

They believe the primary veins follow a regulated distribution pattern. From these veins, an inhibitory signal diffuses from multiple signaling centers. These inhibitory zones emerge randomly and repel one another, further preventing secondary veins from growing in certain areas. This already creates complex patterns, and as the wing grows and develops, it creates the complex geometries of the veins.

The study has been published in PNAS.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.