homehome Home chatchat Notifications


Ecosystems still feel the pain of ancient extinctions

The more researchers study ecosystems, the more we learn that an ecosystem behaves, in many ways, just like a living organism: thousands of years after human hunters wiped out big land animals like giant ground sloths, the ecosystems they lived in are still suffering from the effects, much like a body suffers from past trauma. […]

Mihai Andrei
September 9, 2013 @ 2:04 pm

share Share

The more researchers study ecosystems, the more we learn that an ecosystem behaves, in many ways, just like a living organism: thousands of years after human hunters wiped out big land animals like giant ground sloths, the ecosystems they lived in are still suffering from the effects, much like a body suffers from past trauma.

The giant sloth, imagined in happier days. Image: Jaime Chirinos/SPL

The giant sloth, imagined in happier days. Image: Jaime Chirinos/SPL

Humans wiping out species (directly through hunting or indirectly through habitat destruction) is not really a new thing. Early human hunters have posed a stress on environments for thousands if not tens of thousands of years, because they were so successful and the prey didn’t have enough time to adapt.

Most ecosystems rely on big animals to supply them with nutrients (read: dung fertilizing).

“If you remove the big animals from an ecosystem, you pretty much stop nutrients moving,” says Chris Doughty of the University of Oxford.

In order to understand the impact of this extinction, Doughty and his colleagues studied the distribution of phosphorous – a nutrient that plants need to grow; he analyzed the Amazon basin in South America, an area which was once the home of fantastically large animals, such as elephant-like gomphotheres and giant ground sloths.

Unfortunately for these spectacular animals though, some 12.500 years ago, humans moved to South America, and shortly after this, these animals went extinct due to extensive hunting and climate change. Today, the Amazon basin is home to a huge biodiversity, but there are no more truly big animals – and their extinction still has a massive effect on the distribution of phosphorous throughout the basin.

Using the relationship between animal size and phosphorous distribution, Doughty estimated how much phosphorus South America’s larger extinct animals would have transported 15,000 years ago. His model concluded that megafauna would have spread nutrients 50 times faster than today’s fauna. This happens because big animals carry more food around in their bellies and they also travel more searching for food. It’s just like blood vessels in the body:

When you get rid of big animals, it’s like severing the nutrient arteries.”, says Doughty. He thinks the same thing happened in North America, Europe and Australia, where most big animals have also been wiped out. “The idea that herbivores redistribute nutrients is not new, but the scale of this thinking is much, much bigger,” says Tim Baker at the University of Leeds in the UK.

If his model is correct, than it’s quite safe to assume that the Amazon is still recovering from this drastic event which severely altered the circuit of nutrients. With large herbivores gone from the area, it’s up to the humans to take their role – but we’re doing the complete opposite of what they’re doing.

amazon basin

“These megafauna would disperse nutrients, whereas humans concentrate them,” says Doughty. We spread fertiliser on small plots of productive farmland, and keep large animals like cows fenced rather than letting them roam freely. “There are probably more nutrients because of people, but they are very poorly distributed.”

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

These Squirrels Are Hunting and Eating Meat. Scientists Are Stunned — And They Have Video Proof

California ground squirrels surprise scientists with their newly discovered taste for mammalian flesh.

This New Catalyst Can Produce Ammonia from Air and Water at Room Temperature

Forget giant factories! A new portable device could allow farmers to produce ammonia right in the field, reducing costs, and emissions.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".